§ 1. 6 无穷小与无穷大

- 一、无穷小
- 二、无穷大

$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0} [f(x) - A] = 0$$

❖函数极限的 ε - δ 定义

$$\lim_{x \to x_0} f(x) = A$$

- $\Leftrightarrow \forall \varepsilon > 0$, $\exists \delta > 0$, $\dot{\exists} 0 < |x x_0| < \delta$ 时, 有 $|f(x) A| < \varepsilon$.

$$\Leftrightarrow \lim_{x \to x_0} [f(x) - A] = 0$$

2

首页

上页

返回

下页

结束

一、无穷小

❖无穷小的定义

定义 极限为零的变量(函数)称为无穷小.

例1 因为 $\lim_{x\to\infty} \frac{1}{x} = 0$,所以函数 $\frac{1}{x}$ 为当 $x\to\infty$ 时的无穷小.

因为 $\lim_{n\to\infty} \frac{1}{n+1} = 0$,所以数列 $\{\frac{1}{n+1}\}$ 为当 $n\to\infty$ 时的无穷小.

因为 $\lim_{x\to 1^+} \sqrt{x-1} = 0$,所以函数 $\sqrt{x-1}$ 为当 $x\to 1^+$ 时的无穷小.

注意: (1) 无穷小是变量, 不能与很小的数混淆.

(2) 零是可以作为无穷小的唯一常数.

因为若 $f(x) \equiv 0$,则对于任意给定的 $\varepsilon > 0$,总有 $|f(x)| < \varepsilon$.

一、无穷小

❖定理1(无穷小与函数极限的关系)

例如,因为
$$\frac{1+x^3}{2x^3} = \frac{1}{2} + \frac{1}{2x^3}$$
,而 $\lim_{x \to \infty} \frac{1}{2x^3} = 0$,

所以
$$\lim_{x\to\infty} \frac{1+x^3}{2x^3} = \frac{1}{2}$$
.

提示: f(x)=A+[f(x)-A], $\alpha=f(x)-A$.

无穷小的运算性质

定理1 在同一过程中, 有限个无穷小的代数和仍是 无穷小.

证 设 α 及 β 是当 $x \to \infty$ 时的两个无穷小,则 $\forall \varepsilon > 0$, $\exists N_1 > 0$, $N_2 > 0$, 使得 当 $|x| > N_1$ 时恒有 $|\alpha| < \frac{\varepsilon}{2}$; 当 $|x| > N_2$ 时恒有 $|\beta| < \frac{\varepsilon}{2}$; 取 $N = \max\{N_1, N_2\}$,则当|x| > N时, 恒有 $|\alpha \pm \beta| \le |\alpha| + |\beta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, ∴ $\alpha \pm \beta \to 0 (x \to \infty)$.

注意 无穷多个无穷小的代数和未必是无穷小.

例如, $x \to \infty$ 时, $\frac{1}{n}$ 是无穷小,但 $n \land \frac{1}{n}$ 之和为1,不是无穷小.

定理2 有界函数与无穷小的乘积是无穷小.

证 设函数 u 在 $U^{\circ}(x_0, \delta_1)$ 内有界,则 $\exists M > 0$, $\delta_1 > 0$,使得当 $0 < |x - x_0| < \delta_1$ 时,恒有 $|u| \le M$.

又设 α 是当 $x \to x_0$ 时的无穷小,则 $\forall \varepsilon > 0$, $\exists \delta_2 > 0$,使得当 $0 < |x - x_0| < \delta_2$ 时,恒有 $|\alpha| < \frac{\varepsilon}{M}$.

取 $\delta = \min\{\delta_1, \delta_2\}$,则当 $0 < |x - x_0| < \delta$ 时,恒有 $|u \cdot \alpha| = |u| \cdot |\alpha| < M \cdot \frac{\varepsilon}{M} = \varepsilon,$

∴ 当 $x \to x_0$ 时, $u \cdot \alpha$ 为无穷小.

5

首页

上页

返回

下页

结束

定理2 有界函数与无穷小的乘积是无穷小.

推论1 同一过程中, 有极限的变量与无穷小的乘积是无穷小.

推论2 常数与无穷小的乘积是无穷小.

推论3 有限个无穷小的乘积也是无穷小.

例如 当 $x \to 0$ 时,变量 $x \sin \frac{1}{x}$, $x^2 \arctan \frac{1}{x}$ 都是无穷小.

7

首页

上页

返回

下页

结束

例 1 求
$$\lim_{x\to\infty} \frac{\sin x}{x}$$
.

解 因为
$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \sin x$$

而当
$$x \to \infty$$
时, $\frac{1}{x}$ 是无穷小量,

 $\sin x$ 是有界量 ($\sin x \le 1$),

$$\lim_{x\to\infty}\frac{\sin x}{x}=0.$$

8

首页

上页

返回

下页

结束

❖无穷小的性质

- •定理1 有限个无穷小的和也是无穷小.
- •定理2 有界函数与无穷小的乘积是无穷小.
- •推论1 常数与无穷小的乘积是无穷小.
- •推论2 有限个无穷小的乘积也是无穷小.

9 首页 上页 返回 下页 结束 铃

二、无穷大

❖无穷大的定义

如果当 $x \rightarrow a$ 时,|f(x)|无限增大,那么称函数f(x)为当 $x \rightarrow a$ 时的无穷大,记为

 $\lim_{x\to a} f(x) = \infty$. [形式记法,实际上极限不存在]

说明:

当 $x \rightarrow a$ 时为无穷大的函数f(x),按函数极限定义来说,极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说"函数的极限是无穷大".

二、无穷大

❖无穷大的定义

如果当 $x \rightarrow a$ 时,|f(x)|无限增大,那么称函数f(x)为当 $x \rightarrow a$ 时的无穷大,记为

 $\lim_{x\to a} f(x) = \infty$. [形式记法,实际上极限不存在]

❖无穷大的精确定义

 $\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall M > 0, \ \exists \delta > 0, \ \underline{\exists} 0 < |x - x_0| < \delta \text{ if } , \ \underline{f}[f(x)] > M.$

•正无穷大与负无穷大

$$\lim_{x \to a} f(x) = +\infty, \ \lim_{x \to a} f(x) = -\infty$$

例 2 证明
$$\lim_{x\to 1}\frac{1}{x-1}=\infty$$
.

证
$$\forall M > 0$$
, 要使 $\left| \frac{1}{x-1} \right| > M$, 只要

$$|x-1|<\frac{1}{M},$$

取
$$\delta = \frac{1}{M}$$
, 则当 $0 < |x-1| < \delta = \frac{1}{M}$ 时, 就有

$$\left|\frac{1}{x-1}\right| > M.$$

所以

$$\lim_{x\to 1}\frac{1}{x-1}=\infty.$$

12 首页

上页

返回

下页

结束

无穷小与无穷大的关系

定理 在自变量变化的同一变化过程中,无穷大的 倒数为无穷小; 恒不为零的无穷小的倒数为无穷大.

证 设 $\lim_{x \to x_0} f(x) = \infty$, 则 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时恒有 $|f(x)| > \frac{1}{\varepsilon}$, 即 $\frac{1}{f(x)} < \varepsilon$.

 $:: \exists x \to x_0 \text{ 时} \frac{1}{f(x)} \text{ 为无穷小}.$

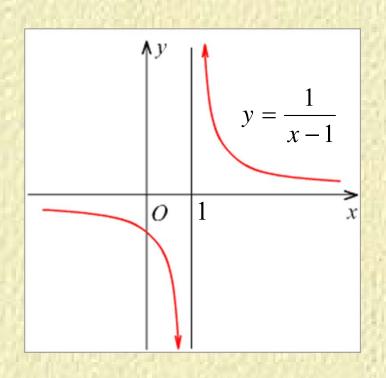
反之,设 $\lim_{x \to x_0} f(x) = 0$,且 $f(x) \neq 0$, $\therefore \forall M > 0$, $\exists \delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时,恒有 $|f(x)| < \frac{1}{M}$,

意义 无穷大的讨论可归结为关于无穷小的讨论.

定理 在自变量变化的同一变化过程中,无穷大的 倒数为无穷小; 恒不为零的无穷小的倒数为无穷大.

例如 因为
$$\lim_{x\to 1}(x-1)=0$$
,

所以
$$\lim_{x\to 1}\frac{1}{x-1}=\infty$$
.



例3 求
$$\lim_{x\to\infty}\frac{x^4}{x^3+5}$$
.

解 因为
$$\lim_{x\to\infty} \frac{x^3+5}{x^4} = \lim_{x\to\infty} (\frac{1}{x} + \frac{5}{x^4}) = 0$$

根据无穷小与无穷大的关系有

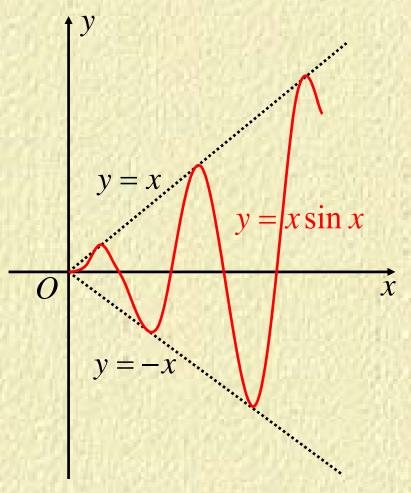
$$\lim_{x\to\infty}\frac{x^4}{x^3+5}=\infty.$$

练习: P51 1.

❖无穷大与无界之间的关系

在自变量的同一变化过程中,如果 f(x) 为无穷大,则 f(x) 无界. 反之不然.

例如 当 $x \to +\infty$ 时,函数 $y = x \sin x$ 是无界的,但不是无穷大.



SENTE MOU UNITED

(1) 设 $\{x_n \in I\}$, 如果有 $\lim_{n\to\infty} f(x_n) = \infty$,

则 f(x) 在区间 I 中无界.

(2) 设 $x_n \neq a$, 且 $\lim_{n\to\infty} x_n = a$. 如果 $f(x_n)$ 为有界数列, 则当 $x \to a$ 时, f(x) 不是无穷大.

(1) 的简证 $\forall M > 0$, Θ $\lim_{n \to \infty} f(x_n) = \infty$,

所以当 n 足够大时,有 $|f(x_n)| > M$.

(2)的简证 用反证法.

$$\lim_{x \to a} f(x) = \infty \implies \lim_{n \to \infty} f(x_n) = \infty (\forall x_n \to a)$$

 \Rightarrow 数列 $\{f(x_n)\}$ 无界.

OR AND UNITED

(1) 设 $\{x_n \in I\}$, 如果有 $\lim_{n\to\infty} f(x_n) = \infty$,

则 f(x) 在区间 I 中无界.

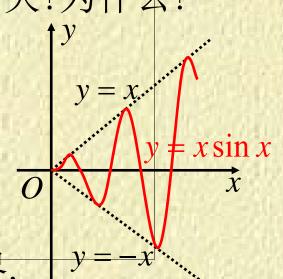
(2) 设 $x_n \neq a$,且 $\lim_{n\to\infty} x_n = a$.如果 $f(x_n)$ 为有界数列,则当 $x \mapsto a$ 时,f(x)不是无穷大.

例4 函数 $y = x \sin x$ 在 $(-\infty, +\infty)$ 内是否有界?又当 $x \to +\infty$ 时,这个函数是否为无穷大?为什么?

解 取
$$x_n = 2n\pi + \frac{\pi}{2}$$
,
$$y(x_n) = x_n \sin x_n = 2n\pi + \frac{\pi}{2}$$
,

显然 $\lim_{n\to\infty} y(x_n) = \infty$,

所以函数 $y = x \sin x$ 在 $(-\infty, +\infty)$ 内无界.



(1) 设 $\{x_n \in I\}$, 如果有 $\lim_{n \to \infty} f(x_n) = \infty$,

则 f(x) 在区间 I 中无界.

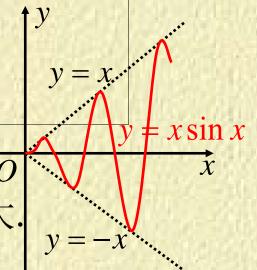
(2) 设 $x_n \neq a$, 且 $\lim_{n\to\infty} x_n = a$. 如果 $f(x_n)$ 为有界数列,则当 $x \to a$ 时, f(x) 不是无穷大.

例4 函数 $y = x \sin x$ 在 $(-\infty, +\infty)$ 内是否有界?又当 $x \to +\infty$ 时,这个函数是否为无穷大?为什么?

解 取 $x'_n = n\pi$, $y(x'_n) = x'_n \sin x'_n = 0$,

因为 $\lim_{n\to\infty} x'_n = +\infty$, 且 $\{y(x'_n)\}$ 为有界数列,

所以当 $x \to +\infty$ 时, $y = x \sin x$ 不是无穷大.



19

首页

上页

返回

下页

结束

裻

作业

习题1-6 (P51):

2.

5.

 20
 首页
 上页
 返回
 下页
 结束
 铃