纽约州立大学杨容伟教授学术报告
报告题目:Projective spectrum, self-similar group representations and complex dynamics
报告时间:2021年11月17日(周三),上午8:30-10:30
报告地点:腾讯会议(会议ID:787 727 333 会议密码:1117)
报告人:Rongwei Yang
摘要:Complex dynamics concerns with iterations of complex maps, and the issue of convergence is often described by fascinating fractals related to the Julia set and the Mandelbrot set. In the late 1990s, Grigorchuk and his collaborators discovered self-similar group representations. This type of representation can be naturally lifted to a representation on a bigger Hilbert space. And in 2009 the notion of projective spectrum for several linear operators A1,…, An was defined through the multiparameter pencil A(z) = z1A1+_ _ _+znAn, where z in Cn. How can these three vastly different subjects be related? This talk will reveal a hidden and yet natural link through linear algebra.
报告人简介:杨容伟教授于1998年5月获得美国纽约州立大学石溪分校博士学位,师从国际泛函分析及算子理论方向著名学者Ronald G. Douglas教授,1998.9月至2001.7月在美国乔治亚大学作博士后,现为美国纽约州立大学奥尔巴尼分校数学统计系教授。研究兴趣主要包括:多元算子理论、泛函分析、多变量复分析、群论、复几何、算子代数等。杨教授是多元算子理论研究方向国际知名专家,也是双圆盘Hardy空间上算子理论及Banach代数算子投影谱理论的开创者。